How stable is an atom? Recall from your mechanics class, that to keep a body, su
ID: 1406157 • Letter: H
Question
How stable is an atom? Recall from your mechanics class, that to keep a body, such as a Low Earth Orbit (LEO) satellite, in orbit, it needs to be given a certain initial (tangential) velocity. Essentially this velocity will cause a centripetal force that counteracts the gravitation pull of the earth. Earth For a hydrogen atom, the average distance between the nucleus and the electron is about 5x10 m. From Coulomb's law, calculate the speed at which the electron has to move to stay in a stable orbit around the nucleus. How does that speed compare to the speed of light? Hint: To get a stable orbit, the centripetal force pushing out should match the Coulomb force pushing in The centripetal force is equal to Fcentripeta,--Explanation / Answer
Coulomb,sforce must be equal to the centripetal force to get the constant speed in the orbit
Coulomb's force = centripetal force
k*q1*q2/r^2 = m*v^2/r
q1 = q2 = 1.6*10^-19 C
k = 9*10^9 N.m^2/C^2
m is the mass of the electron = 9.11*10^-31 kg
v is the speed of the electron
then v = sqrt(k*q1^2/(m*r)) = sqrt(9*10^9*1.6*1.6*10^-38/(9.11*10^-31*5*10^-11)) = sqrt(5.05*10^12)
v = 2.25*10^6 m/s is the required speed of the electron in the orbit
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.