Help me for the Question 2 please Input data: EUR r 5% Year Project 1Project 2 1
ID: 1170728 • Letter: H
Question
Help me for the Question 2 please
Input data: EUR r 5% Year Project 1Project 2 1000 Project 3 Project 4Project 5 Project 6 Project 7 22000 10000 25000 3500 5000 100 100 100 100 100 100 100 100 100 100 100 100 100 300 500 800 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 380 430 480 530 580 630 680 455 503 551 599 647 695 743 791 839 887 935 983 1031 2000 2000 780 830 880 930 980 8000 8000 8000 8000 8000 500 10 500 12 500 13 500 With the budget of 50 000 EUR please select the group of projects to finance, using NPV method and by applying additivity principle What is the range of investment costs in your portfolio and in the list of all the projects? What is the mean (incoming cash flow) for each year in you selected projects? What is the standard deviation of cash flows (incoming) in your selected group of projects? Which factors do affect the most the overall result of the calculations (prove it with the numbers)? 1. 2. 3.Explanation / Answer
First step we will have to identify the group of projects to be selected based on NPV. In NPV cases where we get positive NPV we will select those projects In Euro Year Discounting factor (r=5%) Project 1 Present value of Project 1 (DF*Project 1) Project 2 Present value of Project 2 (DF*Project 2) Project 3 Present value of Project 3 (DF*Project 3) Project 4 Present value of Project 4 (DF*Project 3) Project 5 Present value of Project 5 (DF*Project 5) Project 6 Present value of Project 6 (DF*Project 6) Project 7 Present value of Project 7 (DF*Project 7) -1000 -1000 -10000 -10000 -25000 -25000 -3500 -3500 -4500 -4500 -5000 -5000 -22000 -22000 1 0.9524 100 95.24 300 285.71 2000 1,904.76 1000 952.38 380 361.90 455 433.33 - 2 0.9070 100 90.70 500 453.51 2000 1,814.06 1000 907.03 430 390.02 503 456.24 - 3 0.8638 100 86.38 800 691.07 2000 1,727.68 1000 863.84 480 414.64 551 475.97 - 4 0.8227 100 82.27 1000 822.70 2000 1,645.40 1000 822.70 530 436.03 599 492.80 - 5 0.7835 100 78.35 1000 783.53 2000 1,567.05 1000 783.53 580 454.45 647 506.94 - 6 0.7462 100 74.62 1000 746.22 2000 1,492.43 1000 746.22 630 470.12 695 518.62 - 7 0.7107 100 71.07 1000 710.68 2000 1,421.36 1000 710.68 680 483.26 743 528.04 - 8 0.6768 100 67.68 1000 676.84 2000 1,353.68 500 338.42 730 494.09 791 535.38 8000 5,414.7149 9 0.6446 100 64.46 1000 644.61 2000 1,289.22 500 322.30 780 502.79 839 540.83 8000 5,156.8713 10 0.6139 100 61.39 1000 613.91 2000 1,227.83 500 306.96 830 509.55 887 544.54 8000 4,911.3060 11 0.5847 100 58.47 1000 584.68 2000 1,169.36 500 292.34 880 514.52 935 546.68 8000 4,677.4343 12 0.5568 100 55.68 1000 556.84 2000 1,113.67 500 278.42 930 517.86 983 547.37 8000 4,454.6993 13 0.5303 100 53.03 1000 530.32 2000 1,060.64 500 265.16 980 519.71 1031 546.76 8000 4,242.5708 NPV (60.64) -1899.38 -6212.854 4089.973 1568.953 1673.495 6857.596718 The firm can undertake Project 4,5,6 and 7 which has positive NPV The total cost of these group of projects is =3500+4500+5000+22000 Euro 35000 The Net present value of these group of projects would be 4089.973+1568.953+1673.495+6857.596718 Euro 14190.02 This is the maximum the firm can earn on investment of Euro 35000. Investment in any other project would lead to reduction in NPV First step we will have to identify the group of projects to be selected based on NPV. In NPV cases where we get positive NPV we will select those projects In Euro Year Discounting factor (r=5%) Project 1 Present value of Project 1 (DF*Project 1) Project 2 Present value of Project 2 (DF*Project 2) Project 3 Present value of Project 3 (DF*Project 3) Project 4 Present value of Project 4 (DF*Project 3) Project 5 Present value of Project 5 (DF*Project 5) Project 6 Present value of Project 6 (DF*Project 6) Project 7 Present value of Project 7 (DF*Project 7) -1000 -1000 -10000 -10000 -25000 -25000 -3500 -3500 -4500 -4500 -5000 -5000 -22000 -22000 1 0.9524 100 95.24 300 285.71 2000 1,904.76 1000 952.38 380 361.90 455 433.33 - 2 0.9070 100 90.70 500 453.51 2000 1,814.06 1000 907.03 430 390.02 503 456.24 - 3 0.8638 100 86.38 800 691.07 2000 1,727.68 1000 863.84 480 414.64 551 475.97 - 4 0.8227 100 82.27 1000 822.70 2000 1,645.40 1000 822.70 530 436.03 599 492.80 - 5 0.7835 100 78.35 1000 783.53 2000 1,567.05 1000 783.53 580 454.45 647 506.94 - 6 0.7462 100 74.62 1000 746.22 2000 1,492.43 1000 746.22 630 470.12 695 518.62 - 7 0.7107 100 71.07 1000 710.68 2000 1,421.36 1000 710.68 680 483.26 743 528.04 - 8 0.6768 100 67.68 1000 676.84 2000 1,353.68 500 338.42 730 494.09 791 535.38 8000 5,414.7149 9 0.6446 100 64.46 1000 644.61 2000 1,289.22 500 322.30 780 502.79 839 540.83 8000 5,156.8713 10 0.6139 100 61.39 1000 613.91 2000 1,227.83 500 306.96 830 509.55 887 544.54 8000 4,911.3060 11 0.5847 100 58.47 1000 584.68 2000 1,169.36 500 292.34 880 514.52 935 546.68 8000 4,677.4343 12 0.5568 100 55.68 1000 556.84 2000 1,113.67 500 278.42 930 517.86 983 547.37 8000 4,454.6993 13 0.5303 100 53.03 1000 530.32 2000 1,060.64 500 265.16 980 519.71 1031 546.76 8000 4,242.5708 NPV (60.64) -1899.38 -6212.854 4089.973 1568.953 1673.495 6857.596718 The firm can undertake Project 4,5,6 and 7 which has positive NPV The total cost of these group of projects is =3500+4500+5000+22000 Euro 35000 The Net present value of these group of projects would be 4089.973+1568.953+1673.495+6857.596718 Euro 14190.02 This is the maximum the firm can earn on investment of Euro 35000. Investment in any other project would lead to reduction in NPV The range of investment costs in our portfolio = Maximum costs - Minimum costs In our portfolio of projects the minimum cost is Euro 3500 In our portfolio of projects the maximum cost is Euro 22000 Range = 22000-3500 =18500 The range of investment costs in the list of projects = Maximum costs - Minimum costs Project with minimum costs Euro 1000 Project with maximum costs Euro 25000 Range = 25000-1000 =24000 Incoming cashflow in Euro Year Project 4 Project 5 Project 6 Project 7 Total Cash inflow (Project 4 + Project 5 + Project 6 + Project 7 Mean (Total cash inflow/4) Cash Inflow-Mean (Cash Inflow-Mean)^2 ((Cash Inflow-Mean)^2)/4 Standard Deviation = Square root of ((Cash Inflow-Mean)^2)/4 1 1000 380 455 1835 458.75 1,376.25 1,894,064.06 473,516.02 688.125 2 1000 430 503 1933 483.25 1,449.75 2,101,775.06 525,443.77 724.875 3 1000 480 551 2031 507.75 1,523.25 2,320,290.56 580,072.64 761.625 4 1000 530 599 2129 532.25 1,596.75 2,549,610.56 637,402.64 798.375 5 1000 580 647 2227 556.75 1,670.25 2,789,735.06 697,433.77 835.125 6 1000 630 695 2325 581.25 1,743.75 3,040,664.06 760,166.02 871.875 7 1000 680 743 2423 605.75 1,817.25 3,302,397.56 825,599.39 908.625 8 500 730 791 8000 10021 2,505.25 7,515.75 56,486,498.06 14,121,624.52 3757.875 9 500 780 839 8000 10119 2,529.75 7,589.25 57,596,715.56 14,399,178.89 3794.625 10 500 830 887 8000 10217 2,554.25 7,662.75 58,717,737.56 14,679,434.39 3831.375 11 500 880 935 8000 10315 2,578.75 7,736.25 59,849,564.06 14,962,391.02 3868.125 12 500 930 983 8000 10413 2,603.25 7,809.75 60,992,195.06 15,248,048.77 3904.875 13 500 980 1031 8000 10511 2,627.75 7,883.25 62,145,630.56 15,536,407.64 3941.625 Mean is the average of cashflow inflow in a year Mean = Total Cashflow in a year/no of projects Standard Deviation is the deviation from the mean Standard Deviation = square root of (Cash inflow - Mean of cashflow)^2/n =18500
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.