Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

2. Use the regression tool in Data Analysis to develop a regression model using

ID: 1116003 • Letter: 2

Question

2. Use the regression tool in Data Analysis to develop a regression model using account balance as the dependent variable and ATM use per month as the independent variable.

            a) What is the coefficient on the independent variable? Interpret this in your own words.

            b) Is this statistically significant at the 95% level? How do you know?

            c) Predict the customer’s account balance if they use the ATM 5 times per month.

DATA to use:

Acct. Bal. # ATM tran. # services Debit card? Interest? City 1756 13 4 0 1 2 748 9 2 1 0 1 1501 10 1 0 0 1 1831 10 4 0 1 3 1622 14 6 0 1 4 1886 17 3 0 1 1 740 6 3 0 0 3 1593 10 8 1 0 1 1169 6 4 0 0 4 2125 18 6 0 0 2 1554 12 6 1 0 3 1474 12 7 1 0 1 1913 6 5 0 0 1 1218 10 3 1 0 1 1006 12 4 0 0 1 2215 20 3 1 0 4 137 7 2 0 0 3 167 5 4 0 0 4 343 7 2 0 0 1 2557 20 7 1 0 4 2276 15 4 1 0 3 1494 11 2 0 1 1 2144 17 3 0 0 3 1995 10 7 0 0 2 1053 8 4 1 0 3 1526 8 4 0 1 2 1120 8 6 1 0 3 1838 7 5 1 1 3 1746 11 2 0 0 2 1616 10 4 1 1 2 1958 6 2 1 0 2 634 2 7 1 0 4 580 4 1 0 0 1 1320 4 5 1 0 1 1675 6 7 1 0 2 789 8 4 0 0 4 1735 12 7 0 1 3 1784 11 5 0 0 1 1326 16 8 0 0 3 2051 14 4 1 0 4 1044 7 5 1 0 1 1885 10 6 1 1 2 1790 11 4 0 1 3 765 4 3 0 0 4 1645 6 9 0 1 4 32 2 0 0 0 3 1266 11 7 0 0 4 890 7 1 0 1 1 2204 14 5 0 0 2 2409 16 8 0 0 2 1338 14 4 1 0 2 2076 12 5 1 0 2 1708 13 3 1 0 1 2138 18 5 0 1 4 2375 12 4 0 0 2 1455 9 5 1 1 3 1487 8 4 1 0 4 1125 6 4 1 0 2 1989 12 3 0 1 2 2156 14 5 1 0 2 Column Full variable name A Account balance in $ B Number of ATM transactions last month C Number of other bank services used D Has a debit card (1 = yes, 0 = no) E Receives interest on the account (1 = yes, 0 = no) F Where banking is done 1 = Utica 2 = Schenectady 3 = Amsterdam 4 = Rome

Explanation / Answer

Answer:

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.7089

R Square

0.502539

Adjusted R Square

0.493962

Standard Error

424.6162

Observations

60

ANOVA

df

SS

MS

F

Significance F

Regression

1

10564096

10564096

58.59211781

2.33E-10

Residual

58

10457337

180298.9

Total

59

21021433

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

485.2097

143.4437

3.38258

0.001291648

198.076

772.3435

198.076

772.3435

ATM

98.51038

12.86952

7.654549

0.000000000233

72.74923

124.2715

72.74923

124.2715

a) Regression :

CAB = 485.2+98.51ATM

b) the p-value is very small =0.00 also the t value is >3 therefore otright rejected at all levels of significance. The 95% confidence interval also contains the value of ATMcoefficient therefore statistically significant.

c) AT ATM = 5

CAB = 485.2+98.51*5

CAB = 977.75

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.7089

R Square

0.502539

Adjusted R Square

0.493962

Standard Error

424.6162

Observations

60

ANOVA

df

SS

MS

F

Significance F

Regression

1

10564096

10564096

58.59211781

2.33E-10

Residual

58

10457337

180298.9

Total

59

21021433

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

485.2097

143.4437

3.38258

0.001291648

198.076

772.3435

198.076

772.3435

ATM

98.51038

12.86952

7.654549

0.000000000233

72.74923

124.2715

72.74923

124.2715

a) Regression :

CAB = 485.2+98.51ATM

b) the p-value is very small =0.00 also the t value is >3 therefore otright rejected at all levels of significance. The 95% confidence interval also contains the value of ATMcoefficient therefore statistically significant.

c) AT ATM = 5

CAB = 485.2+98.51*5

CAB = 977.75

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote