Two mutually exclusive water purification systems are being considered for imple
ID: 1091123 • Letter: T
Question
Two mutually exclusive water purification systems are being considered for implementation overseas. Refer to the data below:
System 1
System 2
Capital investment
Annual revenues
Annual expenses
MV at end of useful life
Useful life
$100,000
$50,000
$15,000
$20,000
12 years
$150,000
$75,000
$20,000
0
24 years
If MARR = 25 % per year, determine the present worth (PW) of the most profitable water purification system to use. Use the repeatability assumption.
System 1
System 2
Capital investment
Annual revenues
Annual expenses
MV at end of useful life
Useful life
$100,000
$50,000
$15,000
$20,000
12 years
$150,000
$75,000
$20,000
0
24 years
Explanation / Answer
Hi,
Please find the detailed answer as follows:
Step 1: Calculate IRR for both the Projects
System 1:
To calculate IRR, you need to put the value of NPV as 0 and solve for r as follows:
NPV = 0 = -100000 + (50000 - 15000)/(1+r)^1 + (50000 - 15000)/(1+r)^2 + (50000 - 15000)/(1+r)^3 + (50000 - 15000)/(1+r)^4 + (50000 - 15000)/(1+r)^5 + (50000 - 15000)/(1+r)^6 + (50000 - 15000)/(1+r)^7 + (50000 - 15000)/(1+r)^8 + (50000 - 15000)/(1+r)^9 + (50000 - 15000)/(1+r)^10 + (50000 - 15000)/(1+r)^11 + (50000 - 15000 +20000)/(1+r)^12
Solving for r, we get IRR as 34.17%
IRR (System A) = 33.95%
System 2:
NPV = 0 = -150000 + (75000 - 20000)/(1+r)^1 + (75000 - 20000)/(1+r)^2 + (75000 - 20000)/(1+r)^3 + (75000 - 20000)/(1+r)^4 + (75000 - 20000)/(1+r)^5 + (75000 - 20000)/(1+r)^6 + (75000 - 20000)/(1+r)^7 + (75000 - 20000)/(1+r)^8 + (75000 - 20000)/(1+r)^9 + (75000 - 20000)/(1+r)^10 + (75000 - 20000)/(1+r)^11 + (75000 - 20000)/(1+r)^12 + (75000 - 20000)/(1+r)^13 + (75000 - 20000)/(1+r)^14 + (75000 - 20000)/(1+r)^15 + (75000 - 20000)/(1+r)^16 + (75000 - 20000)/(1+r)^17 + (75000 - 20000)/(1+r)^18 + (75000 - 20000)/(1+r)^19 + (75000 - 20000)/(1+r)^20 + (75000 - 20000)/(1+r)^21 + (75000 - 20000)/(1+r)^22 + (75000 - 20000)/(1+r)^23 + (75000 - 20000)/(1+r)^24
Solving for r, we get IRR as 36.65%
Since, IRR of System 2 is higher, we conclude that System 2 is more profitable and we will calculate NPV for System 2.
Step 2: Calculate NPV of System 2:
NPV = -150000 + (75000 - 20000)/(1+.25)^1 + (75000 - 20000)/(1+.25)^2 + (75000 - 20000)/(1+.25)^3 + (75000 - 20000)/(1+.25)^4 + (75000 - 20000)/(1+.25)^5 + (75000 - 20000)/(1+.25)^6 + (75000 - 20000)/(1+.25)^7 + (75000 - 20000)/(1+.25)^8 + (75000 - 20000)/(1+.25)^9 + (75000 - 20000)/(1+.25)^10 + (75000 - 20000)/(1+.25)^11 + (75000 - 20000)/(1+.25)^12 + (75000 - 20000)/(1+.25)^13 + (75000 - 20000)/(1+.25)^14 + (75000 - 20000)/(1+.25)^15 + (75000 - 20000)/(1+.25)^16 + (75000 - 20000)/(1+.25)^17 + (75000 - 20000)/(1+.25)^18 + (75000 - 20000)/(1+.25)^19 + (75000 - 20000)/(1+.25)^20 + (75000 - 20000)/(1+.25)^21 + (75000 - 20000)/(1+.25)^22 + (75000 - 20000)/(1+.25)^23 + (75000 - 20000)/(1+.25)^24 = $68961.08
Answer is $68961.08.
Thanks.
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.